I started looking into resources on teaching math and sustainability together, and it is like going down a rabbit hole. I think this is going to take me the rest of the week, possibly, to cull through all the fabulous resources out there. I'll review them piecewise.
Since I moved back to Seattle, I have really been thinking more about sustainability in the curriculum. Part of it is because I live in Seattle and most of the residents of the city recycle and compost on a very regular basis. (Since we moved to Seattle, Geoff and I have learned a neat trick from our friends for composting. We put our partially filled compost bags in the freezer, and that helps to make composting do-able for us. If you have been on the verge of composting, this could really make a difference for you! We have been amazed by how much our trash is cut down, once we started composting last year.) At my school, we have an extensive environmental stewardship program wherein every single student and full-time faculty member (including most of the non-teaching support faculty) gets out and cleans the school 3 times a week, which includes scrubbing bathrooms, cleaning classrooms and hallways and offices, emptying recycling and compost bins, etc. We do it because we want to instill in the kids a sense of caring for their environment, and this sentiment extends to the greater environment around us. The school's cafeteria institutes Meatless Mondays and provides compostible to-go utensils for the occasions when the staffers need to eat during a meeting. At some point this year, we used an all-school assembly to teach the students how to properly sort trash, and another meeting was devoted to looking at what happens to our sewage waste and where it goes. We encourage the students to minimize packaging on any food that they bring to school (ie. during "parties"). Geoff and I try to walk, bike, and bus everywhere in Seattle, and on the occasions when we do need to drive, we typically use a smart car-sharing program called Car2Go that both saves us money from having to maintain a car ourselves and minimizes our carbon footprint over time. Although we're not vegetarian, we subscribe to a bi-weekly CSA basket for fresh produce to encourage us to eat sustainably (it's local, organic, and cheap... win-win-win!). As a math department, we talked at length about what happens to those textbooks we order and don't use. This coming year, most of the teachers opted away from ordering textbooks as a result. So, at least I don't feel like a hypocrite when I talk to kids about sustainability these days.
Just like teaching math together with social justice, teaching math in the context of sustainability can encourage our students to think critically about issues around them, using the lens of mathematical reasoning. That said, teaching sustainability with math is certainly a challenge, for me at least. The summer is a great time for me to delve into these resources, and I would love to hear what you already do in your classroom and what has been successful.
I found a couple of terrific resources today. This website has some model lesson plans, and I looked specifically at #8, #9, #10 which pertained to the higher-level math classes. I really liked them. I think they are thoughtful and relevant, and with little or no modification can be used in our high-school classes to align to existing content.
On a separate note, Professor Pete Kaslik has written an excellent book on math and sustainability intended for the college level. (If you scroll down on that web page, there is a link to download the book. I linked to the webpage because it includes some copyright disclaimers from the author.) I think that with some modification, you can adapt most parts of Kaslik's great content to be teachable at the high school level. (The statistics part is the only part that I think is difficult to adapt without leaving behind most of the juicy bits.) More generally, his book is a great, in-depth view of math in the real world. Each topic feeds into the next one, covering an array of math content that is solidly rooted in real-world application.
For example, Kaslik starts by investigating individual sustainability in terms of basic financial education and savings -- classic Precalculus stuff. After that, he extends the idea of exponential growth to population and limited resources, in that process investigating a new type of pattern (logistics curve). He talks about the geometry of maximizing living area while minimizing loss of energy (minimizing wall space) in designing architecture, and then takes you through the math of looking at the carrying capacity of towns, based on other living requirements. You can then compare this carrying capacity with population patterns. To investigate sustainability issues further, he introduces the idea of surveying the population, goes through the mathematics of sampling, and then ties it altogether with complex analysis of dynamic systems and how you can model the many input variables using technology (Excel programming). All in all, all of the math is authentic and motivated with real analysis of real issues that can be scaled to critically consider the national or global implications. Brilliant!
I really enjoyed today's foray into sustainability and math, and I look forward to more digging around tomorrow!
No comments:
Post a Comment